河南大学学科建设处
站内搜索:
当前位置: 首页> 学科建设> 一流学科> 生物学> 专家学者> 正文

师冰洋

IMG_2482

教授,国家重点研发计划青年项目首席,河南大学-麦考瑞大学生物医学联合创新中心(JCBI)执行主任

河南大学金明校区生命科学学院

JCBI网址: http://bs.henu.edu.cn, 邮箱: bs@henu.edu.cn

研究方向:生物纳米技术

 




 


师冰洋,男,1983年生,生物医学博士。2016年被河南大学聘为特聘教授,并组建生物医学联合创新中心,任执行主任。该中心先后获批“河南省纳米生物医学国际联合实验室”和“河南省生物纳米医学学科创新引智基地”。目前,师冰洋博士是国家重点研发计划青年项目首席。担任Frontier in ChemistryIF 3.994)副编辑,Journal of NanomaterialsIF 1.8)杂志客座主编。

师冰洋教授主要从事重大疾病的高精度检测和精准治疗研究,涉及早期检测和协同治疗(细胞治疗、药物治疗和基因治疗)等领域,已取得系统性研究成果。近五年来,在稀土纳米晶的生物应用(Nature Nanotechnology 2015)、脑靶向药物传输(Small 2017, Nanoscale 2017)和药物可控释放(Advanced Materials 2013 Small 2014, Biomaterials 2014, Nano Letters 2017)等领域的主流期刊发表 SCI 论文 30 余篇。受邀为Trends in BiotechnologyLight Biomacromolecules 撰写脑靶向药物递送和脑疾病治疗的综述。曾联合澳洲和德国知名抗体公司研发出新一代稀土纳米晶(Nature Nanotechnology 2015),成功开发高精度早期疾病检测试剂盒,已进入了临床一期。

2012-2016年,主持澳大利亚基金三项,累计经费130余万澳元。回国后主持国家重大研发计划纳米专项青年项目一项(275万),国家自然基金—河南省联合基金项目一项(46万),国家自然基金应急管理项目一项(15万),河南省卫生计生委科技创新型人才项目一项(25万)。


 




 


学习工作履历:

2002.09-2006.06  河南大学生命科学学院  本科

2006.09-2009.06  华东理工大学生物工程学院  硕士研究生        

2010.03-2013.10  澳大利亚阿德莱德大学化学工程学院生物医学工程专业  博士研究生

2013.12-2014.10  澳大利亚麦考瑞大学医学与健康科学学院  博士后研究员

2014.11-2015.09  澳大利亚麦考瑞大学医学与健康科学学院  独立研究员,课题组组长

2015.10-2016.01  澳大利亚麦考瑞大学医学与健康科学学院  课题组组长,高级讲师(副教授)

2016.01--至今    河南大学-麦考瑞大学生物医学联合创新中心执行主任

 




 


主要研究方向:

1 研发高灵敏度的纳米探针,同时辅以自主研发的高通量检测平台,对植物关键抗体或受体蛋白和信号通路的激酶进行高通量检测及筛选;

2 研发高效纳米输送系统,用于输送基因编辑蛋白,基因干扰siRNA,或靶向性治疗药物。从而提高育种效率及品质,改善农药使用率,降低残余;

3:研究功能纳米颗粒在植物体中的吸收,运输,毒性及对植物生长和功能调节的作用。

 




 


获得的主要奖项:

2018.01   第十三届河南省青年科技奖

2017.06   2017年度河南省教育厅学术技术带头人;

2017.03   河南省卫生计生创新型人才51282工程,特聘学科带头人;

2016.09   第四届新型高分子材料与控制释放国际会议“Rising star”奖;

2015.10   澳大利亚健康与卫生部Peter Doherty研究员奖;

2015.10   澳大利亚健康与卫生部Dementia职业发展研究员奖;

2014.01   澳大利亚阿德莱德大学优秀博士论文Top 5%);

2012.06   华东理工大学优秀硕士论文Top 2%)。

 




 


代表性研究论文(*指通讯作者):

1.      Huijie Qi, Lihong Niu, Jie Zhang, Jian Chen, Shujie Wang, Jingjing Yang, Siyi Guo, Tom Lawson, Shi, B.Y.* & Chunpeng Song*. Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing. Science China-Life Sciences. 2018. https://doi.org/10.1007/s11427-017-9270-x (invited paper) [IF=2.781]

2.      Weimin Ruan, Meng Zheng,* Yang An, Yuanyuan Liu, David B. Lovejoy, Mingcong Hao, Yan Zou, Albert Lee, Shu Yang, Yiqing Lu, Marco Morsch, Roger Chungc and Shi, B.Y.* DNA nanoclew templated spherical nucleic acid for siRNA delivery. Chemical Communications. 2018; 54: 3609-3612. [IF=6.319]

3.      Meng Zheng, Wei Tao, Yan Zou, Omid C. Farokhzad, and Shi, B.Y.* Nanotechnology based strategies for siRNA brain delivery for disease therapy. Trends in Biotechnology. 2018; 36: 562-575. [IF=11.126]

4.      Yi-Jung Ho, Yueh-Min Lin, Yen-Chi Huang, Shi, B.Y., Kun-Tu Yeh, Zhiyuan Gong. Prognostic significance of high YY1AP1 and PCNA expression in colon adenocarcinoma. Biochemical and Biophysical Research Communications. 2017, accepted. [IF=2.466]

5.      Albert Lee, Shi, B.Y.,et al. Casein Kinase II Phosphorylation of cyclin F at Serine 621 regulates the Lys48-ubiquitylation E3 ligase activity of the SCF<sup>(cyclin F) </sup>complex. Open Biology. 2017; 7: 170058. [IF=3.481]

6.      Albert Lee, Shi, B.Y.,et al Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy. Cellular and Molecular Life Sciences. 2018; 75(2): 335-354. [IF=4.4]

7.      Ding, Li; Wang, Yilin; Zhu, Shi, B.Y., Xianbing; Ling, Xiang; Chen, Houjie; Nan, Wenhao; Austin, Barrett;  Guo, Zilei; Tao, Wei; Wu, Jun*; Shi, Xiaojun*. Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Anti-Exocytosis Enhanced, Lysosome Impairment-Based Cancer Therapy. Nano Letter, 2017, 17 (11), 6790–6801 [IF=12.42]

8.      Fu, L., Morsch, M., Shi, B.Y.*, Lee, A., L, Jin, D., Chung, R. Versatile Upconvertion Surface Evaluation Platform for Bio-nano Surface Selection for Nervous System. Nanoscales, 2017; 9: 13683. [IF=7.42]

9.      Shi, B.Y.*, Zheng, M., Tao, W., Chung, R., Jin, D., Ghaffari, D., Farokhzad, O. Challenges in DNA Delivery and Recent Advances in Multifunctional Polymeric DNA Delivery System. Biomacromolecules, 2017; 18: 2231-2246.. [IF=5.32]

10.  Shi, B.Y.*, Du, X., Chen, J., Fu, L., Morsch, M., Lee, A., Liu, Y., Cole, N., Chung, R. Multifunctional Hybrid Nanoparticles for Traceable Drug Delivery and Intracellular Microenvironment‐Controlled Multistage Drug‐Release in Neurons. Small, 2017; 3: 1603966. [IF=8.62]

11.  Zhou, M., Du, X., Li, W., Li, X., Huang, H., Liao, Q., Shi, B.Y., Zhang, X. One-pot synthesis of redox-triggered biodegradable hybrid nanocapsules with a disulfide-bridged silsesquioxane framework for promising drug delivery. J. Mater. Chem. B. 2017,5, 4455-4469. [IF=4.45]

12.  Shimoni, O., Shi B.Y., Adlard, P., Bush, A. Delivery of fluorescent nanoparticles to the brain. Journal of Molecular Neuroscience (2016) 60 (3), 405. [IF=2.2]

13.  Sayyadi N., Justiniano, I., Edwin C. R., Zhang R., Shi, B.Y., Kautto L., Everest-Dass, A., Yuan, J., Walsh, B., Jin, D., Willows, R., Piper, J., Packer, N.H. Sensitive time-gated immuno -luminescence detection of prostate cancer cells using a TEGylated europium ligand. Anal. Chem., 2016, 88 (19), 9564. [IF=6.3]

14.  Chen, J., He, M., Xu, P., Wu, H., Guo, Z., Shi, B.Y.*, Chen, Q. Photoluminescence distinction of lung adenocarcinoma cells A549 and squamous cells H520 using metallothionein expression in response to Cd-doped Mn 3 [Co (CN) 6] 2 nanocubes. RSC Adv. (2016) 6 (88), 84810. [IF=3.1]

15.  Zhou, B., Shi, B.Y., Jin, D.Y., Liu, X.G. Controlling upconversion nanocrystal for emerging applications. Nature Nanotechnology, (2015), 10, 924. [IF=33.412]

16.  Shi, B.Y., Jin, D. Rapid detection of rare-event cell by SUPER Dots based diagnostics nano-platform. J Controlled Release, (2015), 213, 11. [IF=7.6]

17.  Du, X., Shi, B.Y. Liang, J, Bi, J.X., Dai, S. and Qiao, S.Z. Developing functionalized dendrimer-like silica nanoparticles with hierarchical pores as advanced delivery nanocarriers. Advanced Materials, (2013), 25, 5981. [IF=18.908, # = co-first author]

18.  Rain, S., Shi, B.Y.*, Duss, A., Willow, R., Pipe J., Jin, D., Packer, N. Stable Upconversion Nanohybrid Particles for Specific Prostate Cancer Cell Immunodetection. Scientific Reports, 2016; 6: 37533. (Corresponding author) [IF=5.2]

19.  Shi, B.Y.Zhang, H., Dai, S., Du, X., Bi, J.X. and Qiao S.Z. Intracellular microenvironment responsive polymer: A multiple-stage transport platform for high-performance gene delivery. Small, (2014), 10(5), 871. [IF=8.32]

20.  Shi, B.Y., Zhang, H., Qiao S.Z, Bi, J.X. and Dai, S. Intracellular Microenvironment Responsive Label-free Autofluorescent Nanogels for Traceable Gene Delivery. Advanced Healthcare Materials, (2014), 3 (11), 1839. [IF=5.812]

21.  Shi, B.Y., Shen, Z.Y, Zhang, H, Bi, J.X. and Dai, S. Exploring N-Imidazolyl-O- Carboxym -ethyl chitosan for high performance gene delivery. Biomacromolecules, (2012), 13, 146. [IF=5.788]

22.  Shi, B.YZhang, H, Shen, Z.Y, Bi, J.X. and Dai, S. Developing a chitosan supported imidazole Schiff-base for high efficient gene delivery. Polymer Chemistry, (2013), 4, 840. [IF=5.568]

23.  Shi, B.Y., Zhang, H., Bi, J.X., Dai, S. Endosomal pH responsive polymers for efficient cancer targeted gene therapy. Colloids and Surfaces B: Biointerfaces, (2014), 119, 55. [IF=4.254]

24.  Deng, L, Shi, B.Y.*, Zhuang, Y.P, Shi, X.L, and Guo, M.J*, Performance and mechanism of neuroleukin in the growth and survival of embryonic neural stem cells in a co-culture system. Cell Transplantation, (2014) 23(3), 381. [IF=4.42, # = Co-corresponding author) [IF=4.512]

25.  Cong, Y., Shi, B.Y. *, Lu, Y. Q., Wen, S. H., Chung, R., Jin, D.Y. One-step conjugation of glycyrrhetinic acid to cationic polymers for safe and efficient targeting gene delivery. Scientific Reports, 2016; 6: 21891. (Corresponding author) [IF=5.512]

26.  Shi, B.Y, Zhang, S.X, Wang, Y.H, Zhuang, Y.P, Chu, J. Shi, X.L, Bi, J.X. and Guo, M.J. Expansion of mouse sertoli cells on microcarriers. Cell Proliferation, (2010), 43, 275. [IF=3.27]

27.  Shi, B.Y., Zhang, M., Bi, J., Dai, S. Development of a novel folic acid chitosan supported imidazole Schiff base for tumor targeted gene delivery system and drug therapy. J Controlled Release (2013), 1 (172), 98. [IF=7.6]

28.  Shi, B.Y.Deng, L, Shi, X.L, Dai, S, Zhang, H, Wang, Y.H, Bi, J.X, and Guo, M.J, The enhancement of neural stem cell survival and growth by co-culturing with expanded sertoli cells in vitro. Biotechnology Progress, (2012), 28, 196. [IF=1.883]

29.  Du, X., Shi, B.Y., Tang, Y.H., Dai, S., Qiao, S.Z. Label-free dendrimer-like sillica nanohybrids for traceable and controlled gene delivery. Biomaterials, (2014), 35, 5580. [IF=8.512]

30.  Shi, B.Y.; Zhang S.X, Guo, M.J, Wang Y.H, Zhang, S.L, Shi X.L. Metabolic characterization of rat sertoli cell in vitro culture, Chin J Biotech., (2009), 25, 745. [EI]

31.  Cheng R., Ou Sheng., Bu Y., Li X., Liu X., Wang Y., Guo R., Shi, B.Y., Jin D. and Liu Y. Starch-borate-graphene oxide nanocomposites as highly efficient targeted antitumor drugs. RSC Adv, (2015), 5, 94855. [IF=3.812]

32.  Xiong, L., Du, X., Shi, B.Y., Bi.,J., Kleitz, F., Qiao, S.Z. Tunable Stellate Mesoporous Silica Nanoparticles for Intracellular Drug Delivery. Journal of Materials Chemistry B, (2015), 3(8), 1712. [IF=4.512]

33.  Modra K.E., Dai, S. Shi, B.Y., and Bi, J.X. Polycation-mediated gene delivery: challenges and considerations of processes for targeted therapies. Life science in engineering, (2015), 15, 489. [IF=2.512]

34.  Shen, Z.Y, Shi, B.Y, Zhang, H, Bi, J.X. and Dai, S. Exploring low-positively charged thermo sensitive copolymers as gene delivery vectors. Soft Matter, (2012), 8, 1385. [IF=4.151]

35.  Shen, Z.Y, Zhang, H, Shi, B.Y, Bi, J.X. and Dai, S. Exploring thermal reversible hydrogels for stem cell expansion in three-dimension. Soft Matter, (2012), 8, 7250. [IF=4.151]