河南大学学科建设处
站内搜索:
当前位置: 首页> 学科建设> 一流学科> 生物学> 专家学者> 正文

朱晓红





习简

1980-1984 安徽农业大学 本科

1987-1990 扬州大学农学院 硕士

1998-2003 以色列威兹曼研究所 博士

2003-2008 美国耶鲁大学 博士后

作简

1985-1987 安徽安庆农校 任教

1991-1997 扬州大学农学院 任教

2008-2010 美国密歇根技术大学研究助理教授,

2011-2017 美国普渡大学研究科学家

2017-至今 河南大学攀登计划特聘教授

发表论文

1.     Zhu X*, Taylor A, Zhang S, Zhang D, Feng Y and Liang G and Zhu JK*. Measuring spatial and temporal Ca2+ signals in Arabidopsis plants. JoVE. 2014, Sep 2; (91). doi: 10.3791/51945 (*corresponding authors)

2.     Zhu X and Zhu JK. Double repression in jasmonate-mediated plant defense. Molecular Cell. 2013, 50(4): 459-460

3.     Zhu X*, Feng Y, Liang G, Liu N, Zhu JK*. Aequorin-based luminescence imaging reveals stimulus- and tissue-specific Ca2+ dynamics in Arabidopsis plants. Molecular Plant. 2013, 6(2): 444-455 (*corresponding authors)

4.     Yan J, Wang P, Wang B, Hsu CC, Tang K, Zhang H, Hou YJ, Zhao Y, Wang Q, Zhao C, Zhu X, Tao WA, Li J, Zhu JK. The SnRK2 kinases modulate miRNA accumulation in Arabidopsis. PLoS Genet. 2017 Apr 18;13(4): e1006753

5.     Yan J, Zhao C, Zhou J, Yang Y, Wang P, Zhu X, Tang G, Bressan RA, Zhu JK. The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. PLoS Genet. 2016 Nov 3;12(11): e1006416.

6.     Hou YJ, Zhu Y, Wang P, Zhao Y, Xie S, Batelli G, Wang B, Duan CG, Wang X, Xing L, Lei M, Yan J, Zhu X, Zhu JK. Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling. PLoS Genetics. 2016 Mar 4; 12(3): e1005835.

7.     Liu W, Zhu X,   Lei M,  Xia Q,   Botella JR,  Zhu JK, Mao Y. A detailed procedure for CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana. Science Bulletin. 2015 60(15):1332-1347

8.     Li Y, Duan CG, Zhu X, Qian W, Zhu JK. A DNA ligase required for active DNA demethylation and genomic imprinting in Arabidopsis. Cell Research. 2015 Jun; 25(6):757-60.

9.     Li Y, Córdoba-Cañero D, Qian W, Zhu X, Tang K, Zhang H, Ariza RR, Roldán-Arjona T, Zhu JK. An AP endonuclease functions in active DNA demethylation and gene imprinting in Arabidopsis. PLoS Genetics 2015 Jan 8;11(1): e1004905.

10.  Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proceedings of the National Academy of Sciences of the United States of America. 2015 Jan 13;112(2):613-8.

11.  Duan CG, Zhang H, Tang K, Zhu X, Qian W, Hou YJ, Wang B, Lang Z, Zhao Y, Wang X, Wang P, Zhou J, Liang G, Liu N, Wang C, Zhu JK. Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA-directed DNA methylation. EMBO Journal. 2015 Mar 4;34(5):581-92.

12.  Wan Y, Tang K, Zhang DY, Xie S, Zhu X, Wang Z, Lang Z. Transcriptome-wide high-throughput deep m6A-seq reveals unique differential m6A methylation patterns between three organs in Arabidopsis thaliana. Genome Biology. 2015 16:272.

13.  Qian W, Miki D, Lei M, Zhu X, Zhang H, Liu Y, Li Y, Lang Z, Wang J, Tang K, Liu R, Zhu JK. Regulation of Active DNA Demethylation by an α-Crystallin Domain Protein in Arabidopsis.

Molecular Cell. 2014 55(3):361-371

14.  Zhao Y, Xing L, Wang X, Hou YJ, Gao J, Wang P, Duan CG, Zhu X, Zhu JK. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science Signaling. 2014 7(328): ra53

15.  Zhang H, Tang K, Qian W, Duan CG, Wang B, Zhang H, Wang P, Zhu X, Lang Z, Yang Y, Zhu JK.

An Rrp6-like protein positively regulates noncoding RNA levels and DNA methylation in Arabidopsis.

Molecular Cell. 2014 May 8;54(3):418-30

16.  Qian W, Miki D, Zhang H, Liu Y, Zhang X, Tang K, Kan Y, La H, Li X, Li S, Zhu X, Shi X, Zhang K, Pontes O, Chen X, Liu R, Gong Z, Zhu JK. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science. 2012, 336(6087): 1445-1448

17.  Zhu X, Pattathil, S, Mazumder K, Brehm A, Hahn, MG, Dinesh-Kumar SP and Joshi CP. Virus-induced gene silencing offers a functional genomics platform for studying plant cell wall formation. Molecular Plant. 2010, 3(5): 818-33 (Cover)

18.  Wang K, Uppalapati SR, Zhu X, Dinesh-Kumar SP, Mysore KS. SGT1 positively regulates the process of plant cell death during both compatible and incompatible plant-pathogen interactions.

Molecular Plant Pathology. 2010 Sep;11(5):597-611

19.  Zhu X, Caplan J, Mamillapalli P, Czymmek K, Dinesh-Kumar, SP. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death. EMBO Journal. 2010, 29: 1007-1018

20.  Caplan J, Zhu X (Co-first author), Mamillapalli P, Marathe R, Anandalakshmi R and Dinesh-Kumar SP. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host & Microbe. 2009, 6(5): 457-469

21.  Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Cahoon EB, Fernie AR and Galili G. 2009. Novel genes and metabolic networks regulating seed maturation and germination, revealed by seed-specific alteration of Lys metabolism. Plant Physiology. 2009, 151(4): 2058-2072

22.  Angelovici R, Fait A, Zhu X, Szymanski J, Feldmesser E, Fernie AR, Galili G. Deciphering transcriptional and metabolic networks associated with lysine metabolism during Arabidopsis seed development. Plant Physiology. 2009 Dec;151(4):2058-72

23.  Zhu X, Dinesh-Kumar SP. Virus-induced gene silencing as a tool to identify host genes affecting viral pathogenicity. Methods in Molecular Biology. 2008, 451: 641-8

24.  Stepansky A, Less H, Angelovici R, Aharon R, Zhu X, Galili G. Lysine catabolism, an effective    

      versatile regulator of lysine level in plants. Amino Acids. 2006; 30(2): 121-5

25.  Zhu X, Galili G. Lysine metabolism is concurrently regulated by synthesis and catabolism in both    reproductive and vegetative tissues. Plant Physiology. 2004,135(1): 129-136

26.  Zhu X, Galili G. Increased lysine synthesis coupled with a knockout of its catabolism synergistically boosts lysine content and also transregulates the metabolism of other amino acids in Arabidopsis seeds. Plant Cell. 2003, 15(4): 845-853

27.  Zhu X, Tang G, Galili G. The activity of the Arabidopsis bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase enzyme of lysine catabolism is regulated by functional interaction between its two enzyme domains. Journal of Biological Chemistry. 2002, 277(51): 49655-49661

28.  Tang G, Zhu X (Co-first author), Gakiere B, Levanony H, Kahana A, Galili G. The bifunctional LKR/SDH locus of plants also encodes a highly active monofunctional lysine-ketoglutarate reductase using a polyadenylation signal located within an intron. Plant Physiology. 2002, 130(1): 147-154

29.   Zhu X, Tang G, Granier F, Bouchez D, Galili G. A T-DNA insertion knockout of the bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine levels in Arabidopsis seeds. Plant Physiology. 2001, 126(4): 1539-1545

30.  Zhu X, Tang G, Galili G. Characterization of the two saccharopine dehydrogenase isozymes of lysine catabolism encoded by the single composite AtLKR/SDH locus of Arabidopsis. Plant Physiology. 2000, 124(3): 1363-1372

31.  Zhu X, Tang G, Galili G. The catabolic function of the a-aminoadipic acid pathway in plants is associated with unidirectional activity of lysine-ketoglutarate reductase but not saccharopine dehydrogenase. Biochemical Journal. 2000, 351: 215-220

32.  Galili G, Tang G, Zhu X, Gakiere B: Lysine catabolism: A stress and development super- regulated metabolic pathway. Current Opinion in Plant Biology. 2001, 4(3): 261-266

33.  Galili G, Tang G, Zhu X, Karchi H, Miron D, Gakiere B, Stepansky A: Molecular genetic dissection and potential manipulation of lysine metabolism in seeds. Journal of Plant Physiology. 2001, 158(4): 515-520

34.  Galili G, Tang G, Zhu X, Amir R, Levanony H, Shy G, Elliot M Herman. 2000. Plant seeds: an exciting model system for dissecting molecular and cellular regulation of metabolic processes. Israel Journal of Plant Sciences. 48: 181-187

35.  Zhu X, Zhang J: Anti-transpiration and anti-growth activities in the xylem sap from plants under different types of soil stresses. New Phytologist. 1997, 137: 657-664